Резка кислородным копьём
DOLBO.BY - РЕЗКА, СВЕРЛЕНИЕ, РАЗРУШЕНИЕ, УСИЛЕНИЕ В СТРОИТЕЛЬСТВЕ

При частичном разрушении конструкций кроме механизированного инструмента (отбойных молотков, отрезных дисков) применяют установки термического воздействия — кислородное копье, порошково-кислородный резак и так далее. 

Для прожигания отверстий в бетоне и железобетоне, а также для разделительной резки в промышленной практике используют кислородное или кислородно-порошковое копье. 

Например, с помощью копьевой резки прожигались отверстия в бетонной плите, на которой был установлен реактор Чернобыльской атомной станции. Отверстия были необходимы для размещения датчиков, контролирующих температуру, радиационный фон и другие параметры в разрушенном реакторе.

 

Кислородное копье — стальная трубка необходимой длины, по которой пропускается кислород. Будучи предварительно нагретым до температуры 1350–1400 °С, рабочий конец копья после пуска кислорода начинает интенсивно окисляться (гореть), развивая температуру до 2000 °С. Для увеличения тепловой мощности копья внутрь трубки обычно закладывают стальные прутки, но иногда их прихватывают сваркой к наружной поверхности копья (рис. 1). 

Резка кислородным копьём image 

Рис. 1. Прутковые копья

Для начального нагрева копья используют обычно посторонние источники нагрева, например сварочную дугу или подогревающее пламя резака. В начальный момент, при зажигании копья, давление кислорода устанавливают небольшим, не более 0,05 МПа (0,5 кгс/см2), после же воспламенения трубки и установления устойчивого процесса давление кислорода поднимают до рабочего.

В процессе горения копье непрерывно укорачивается, причем в зависимости от толщины прожигаемого материала длина сгоревшей части трубки копья может быть в 5–25 раз больше длины прожигаемого отверстия. Обычно процесс прожигания кислородным копьем отверстий производят без применения подогревающего пламени.

Особенность прожигания отверстий в бетоне и железобетоне состоит в том, что для поддержания материала в месте контакта с копьем в расплавленном состоянии копье необходимо прижимать к обрабатываемому бетону с силой до 300–500 Н (30–50 кгс), преодолевая сопротивление густоплавких шлаков.

Последнее вызвано тем, что бетон, состоящий из оксидов (Al2O3, CaO и SiО2), кислородной струей не окисляется и теплоты не выделяет, в связи с чем быстро застывает при удалении от его поверхности горящего конца копья. Поэтому прожигать отверстия в бетоне и других неметаллических материалах следует без возвратно–поступательных движений копья, а лишь периодически поворачивая копье на угол 10–15° в обе стороны.

Порошково-кислородное (кислородно-флюсовое) копье представляет собой стальную трубку с проходящими по ней кислородом и флюсом — мелкодисперсной смесью металлических порошков (железного и алюминиевого).

Так же, как и при кислородном копье, рабочий конец порошково-кислородного копья в начале процесса нагревают источником теплоты до температуры 1350–1400 °С, после чего в копье подают кислород и флюс.

На выходе из копья порошок воспламеняется, образуя ярко светящийся факел длиной до 50 мм с температурой 4000 °С и выше. Направляя факел копья на поверхность обрабатываемого материала, ее расплавляют и кислородной струей удаляют образующиеся шлаки. При резке металлов наряду с расплавлением имеет место и окисление основного металла.

В отличие от кислородного порошково-кислородное копье во избежание закупорки его шлаком не прижимают к прожигаемому материалу, а выдерживают на расстоянии 30–50 мм от торца образуемого отверстия. Достигается это периодической с интервалом в несколько секунд подачей копья вперед до упора в торец отверстия.

Промежутки времени между очередными подачами копья вперед зависят от скорости сгорания трубки копья. В процессе прожигания отверстий копью иногда придают вращательные движения, поворачивая его рукой на угол 10–15° в обе стороны.

Отверстия в бетоне и железобетоне порошково-кислородным копьем прожигают обычно в горизонтальном или наклонном снизу вверх направлении. Диаметр образуемого порошковым копьем отверстия зависит от диаметра копья, наличия или отсутствия вращательных движений копья и от удельных расходов кислорода и флюса. В результате получаются отверстия приблизительно круглой формы и составляет 30–90 мм.

Разделительную резку начинают от края разрезаемого материала или от начального сквозного отверстия внутри контура. Сущность процесса состоит в том, что, направляя факел копья на поверхность разрезаемого материала и совершая копьем возвратно–поступательных движения по касательной к передней грани реза (рис. 2), расплавляют поверхность материала факелом и удаляют расплавленный материал и шлаки струей кислорода.

Углубляя постепенно копье в разрез, прорезают материал насквозь, т. е. осуществляют разделительную резку. Ширина образуемого щелевого разреза в зависимости от толщины материала и диаметра копья может составлять 25–70 мм.

Резка кислородным копьём image

Рис. 2. Разделительная порошково–копьевая резка в нижнем положении

Резка порошковым копьем возможна во всех пространственных положениях независимо от толщины материала (для бетона и железобетона в пределах 3–3,5 м).

В зависимости от толщины разрезаемого железобетона резку можно выполнять по одной из схем, представленных на рис. 3–5. Так, при толщине железобетона до 300 мм, когда ванна расплавленного бетона и шлака на поверхности передней грани реза может поддерживаться на всей длине этой грани в жидком состоянии, резку целесообразно проводить по схемам рис. 3.

В этом случае копье совершает возвратно–поступательные движения на всю толщину разрезаемого материала, смывая расплавленный бетон в шлаки. Резка железобетона большей толщины этим способом не может быть производительной, так как жидкая ванна шлака на передней грани (длина которой может составлять не более 300 мм) по мере продвижения копья в глубь железобетона застывает.

Последнее вызывает необходимость повторного разогрева передней грани реза до расплавления, что сильно снижает производительность процесса.

 Резка кислородным копьём image

 Рис. 3. Резка бетона и железобетона толщиной до 300 мм:
а — при направлении копья сверху вниз; б — при горизонтальном направлении

Для лучшего удаления шлака из образуемого разреза и достижения большей производительности резку железобетона толщиной более 300 мм следует проводить по схемам рис. 4. 

В этом случае резку начинают от нижней (рис. 4, а) или боковой, задней (рис. 4, б) поверхности разрезаемого железобетона, причем для поддержания шлаковой ванны на всей длине в жидком состоянии максимальная длина передней грани реза не должна превышать 300 мм. Сказанное в полной мере относится к резке в вертикальной плоскости и вертикальном направлении (рис. 5).

 Резка кислородным копьём image

Рис. 4. Резка бетона и железобетона толщиной более 200 мм:

а — в горизонтальной плоскости и вертикальном направлении;

б — в вертикальной плоскости и горизонтальном направлении

 

 Резка кислородным копьём image

 
Рис. 5. Резка бетона и железобетона в вертикальной плоскости и вертикальном направлении:

а — при толщине разрезаемого материала до 300 мм;

б — при толщине разрезаемого материала более 200 мм

 


Резку железобетона толщиной более 200 мм по схемам рис. 4, 5 осуществляют участками (рис. 6). Резку в пределах одного участка выполняют послойно (рис. 7).

 Резка кислородным копьём image


Рис. 6. Схема резки «участками» бетона и железобетона толщиной более 200 мм 

Резка кислородным копьём image

Рис. 7. Схема послойной резки бетона и железобетона толщиной до 200–300 мм и послойной резки отдельных участков при толщине материала более 200 мм

При разделительной резке железобетона важно начало процесса. В простейшем случае резку железобетона начинают от внешней кромки. Однако в практике весьма часты случаи, когда процесс приходится начинать внутри контура железобетонной стены или перекрытия.

Для этого необходимо иметь начальное отверстие диаметром 70–100 мм, которое можно получить как кислородным, так и порошково–кислородным копьем. При порошково–копьевой резке применяют стальные водо–газопроводные трубки с внутренними диаметрами 10 и 15 мм (ГОСТ 3262).

Один из основных параметров режима резки — удельный расход кислорода — зависит от удельного расхода и состава флюса, сечения копья, насыщенности бетона арматурой, а также от толщины разрезаемого железобетона.

При порошково–копьевой разделительной резке железобетона с применением флюса, состоящего из 80–85% Fe и 15–20% Al (по объему), на окисление трубки копья и флюса ориентировочно расходуется до 40% кислорода. Остальное количество его идет на удаление образующихся шлаков и непроизводительные потери.

Коэффициент полезного действия процесса прожигания в большей мере зависит от толщины разрезаемого железобетона, с увеличением которой наблюдается более полное использование кислорода и флюса за счет увеличения времени протекания реакций окисления. Следовательно, удельный расход части кислорода, идущей на окисление трубки копья и флюса при разделительной порошково–копьевой резке, уменьшается с увеличением толщины железобетона.

Однако практически для лучшего удаления шлака при резке больших толщин железобетона давление кислорода увеличивают, в результате чего (при сохранении постоянства проходных сечений кислородопровода) удельный расход кислорода с увеличением толщины разрезаемого железобетона возрастает.

Давление кислорода определяет в основном степень трудности удаления шлака, зависящая, в свою очередь, от толщины железобетона и направления процесса резки.

Так, если при резке железобетона толщиной 1500 мм в вертикальном направлении сверху вниз рабочее давление кислорода составляет 0,6 МПа (6 кгс/см2), то при резке железобетона той же толщины в горизонтальном направлении оно должно составлять не менее 1 МПа (10 кгс/см2).

Однако во избежание чрезмерно большого охлаждающего действия струи и непроизводительных потерь кислорода давление его даже при резке в горизонтальном направлении бетона толщиной до 2000 мм не должно превышать 1,4 МПа (14 кгс/см2).

Большое влияние на производительность резки оказывает также удельный расход флюса, изменение которого в пределах 24–48 кг/ч и более (при резке железобетона толщиной 150–1500 мм) изменяет скорость резки до 25–30%. 

Материал статьи представлен только для ознакомления с данной технологией производства работ.
В данный момент ЧУП "ДОЛБО" не использует описываемый выше метод в своей работе.
 

Акции и новости

Присоединяйтесь к нашим группам ПЕРЕПЛАНИРОВКА "ОДНО ОКНО" в Facebook ...
Категория: Акции и новости 2017-01-03 13:48:21
Сферические панорамы 360° с возможностью перемещения по определенным ...
Категория: Акции и новости 2016-11-25 10:10:58
ЧСУП "ДОЛБО" сертифицировано на право осуществления специальных ...
Категория: Акции и новости 2015-10-18 15:56:30
220053, г. Минск, ул. Будславская, 25 оф 3 - у нас новый адрес ...
Категория: Акции и новости 2016-09-01 18:12:21
17 апреля - мы отмечаем День рождения и принмаем поздравления !!! ...
Категория: Акции и новости 2016-04-06 19:31:00
Предлагаем алмазные диски, свёрла, сегменты DIHARTE (Германия): ...
Категория: Акции и новости 2015-11-01 18:35:45
В августе 2015 года ЧСУП "ДОЛБО", после благотворительных аукционов, ...
Категория: Акции и новости 2015-08-16 18:50:08
Новый раздел сайта "НОВЫЕ ВОЗМОЖНОСТИ" Всё об новинках ...
Категория: Акции и новости 2015-01-18 13:51:58
Стоимость каждого заказа обсуждаем индивидуально! звоните, ...
Категория: Акции и новости 2015-02-25 19:44:00
Новая страница примеров усиления проемов в несущих конструкциях ...
Категория: Акции и новости 2015-01-22 12:00:54
Новая страница примеров алмазного сверления Нестандартные примеры ...
Категория: Акции и новости 2015-01-22 12:00:54
Новая страница примеров разрушения (демонтажа) корректировки ...
Категория: Акции и новости 2015-02-10 18:29:02
Новая страница примеров монтажа металлоконструкций Примеры ...
Категория: Акции и новости 2015-01-22 12:00:54
Строительным организациям и частным подрядчикам предложение. ...
Категория: Акции и новости 2014-04-16 19:45:11
 Специальное предложение для небольших срочных объемов ...
Категория: Акции и новости 2014-04-16 19:40:02
подробнее в  вакансии Специалистам с опытом - от 40 ...
Категория: Акции и новости 2014-04-16 19:46:03

СОЦСЕТИ И ПАРТНЕРЫ

ФОТОГАЛЕРЕЯ